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Abstract

Transformers have been widely regarded as a promising direction for breaking
through the performance bottlenecks of Graph Neural Networks (GNNSs), primarily
due to their global receptive fields. However, a recent empirical study suggests
that tuned classical GNNs can match or even outperform state-of-the-art Graph
Transformers (GTs) on standard node classification benchmarks. Motivated by this
fact, we deconstruct several representative GT's to examine how global attention
components influence node representations. We find that the global attention
module does not provide significant performance gains and may even exacerbate
test error oscillations. Consequently, we consider that the Transformer is barely
able to learn connectivity patterns that meaningfully complement the original graph
topology. Interestingly, we further observe that mitigating such oscillations enables
the Transformer to improve generalization in GNNs. In a nutshell, we reinterpret
the Transformer through the lens of graph spectrum and reformulate it as a global-
aware graph filter with band-pass characteristics and linear complexity. This unique
perspective introduces multi-channel filtering constraints that effectively suppress
test error oscillations. Extensive experiments (17 homophilous, heterophilous
graphs) provide comprehensive empirical evidence for our perspective. This work
clarifies the role of Transformers in GNNs and suggests that advancing modern
GNN research may still require a return to the graph itself.

1 Introduction

Graph Neural Networks (GNNs) [20, 26, 157} 18l 411,431 164} 67]] have demonstrated powerful modeling
capabilities on graph-structured data and have been widely applied to various tasks [16] 35133168,
60\, 44 such as node classification. Most existing GNNs follow a message-passing paradigm [18],
where messages are exchanged between a target node and its neighbors to integrate node features with
graph topology, exhibiting strong spatial locality. Naturally, this local message exchange has raised
concerns about the lack of global awareness, which is often viewed as a performance bottleneck for
GNNs. To address this limitation, some studies [42}40] have explored incorporating Transformers
into graph learning, giving rise to Graph Transformers (GTs). However, it is unclear to what extent
Transformers enhance GNNs.

In the literature, research on GTs has evolved through three distinct stages: (i) Expressive Power. In
the early stage, GTs primarily leveraged the attention mechanism in Transformers [56] to establish
global receptive fields, alleviating the limitations on expressive power caused by over-smoothing [30,
5| and over-squashing [[1}/14]. To enhance model expressiveness, various forms of positional encoding
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(PE, including Laplacian spectral encoding [4, [28]], learnable spectral encoding [15], and both global
and local positional encoding [47].) or structural encoding (SE, including node degree centrality [66],
node subgraph representations [6], pairwise distance and path encoding [70], and random walk-based
encoding [37].) were introduced. (ii) Scalability. GTs have shown promising encoding capabilities
in comparison to GNNs. However, the computational complexity of GNNs typically scales linearly

with the number of edges (O(|€|)), whereas GTs generally incur a quadratic complexity (O(|V|?))
due to the computation of attention score matrices. This prompted the development of linear or sparse
GTs [10L169,152,127,162,161]. Recent advances have shown that state-of-the-art GTs can strike a balance
between expressivity and efficiency. For example, [63]] achieves competitive performance with a
single-layer global attention network of linear complexity. [13] combines high-order polynomial
expressiveness with linear computational complexity. [53] adopts a two-stage process to further
sparsify the attention mechanism, thereby reducing memory overhead. (iii) Effectiveness (Actual
Gains). At this stage, GTs appear to be relatively mature. However, a recent empirical study [36]]
cast doubt on their actual benefits, showing that fine-tuned classical GNNs can perform on par with
or even surpass the SOTA GTs. This finding challenges the fundamental premise of GTs research:
Does the Transformer truly enhance the performance of GNNs? As there is currently no definitive
answer, the field faces significant challenges that warrant deeper reflection.

In this work, we argue that Transformers may not empirically boost the performance upper bound of
GNNs, but they can serve as regularization components to enhance generalization of GNNs. This
conclusion stems from a unique perspective on understanding Transformers. Prior efforts largely
inherit the standard Transformer framework (i.e., the QK”'V paradigm), employing attention either
as a supplement to graph topology or as a downstream encoder following GNNs. However, based
on our experimental observations (as shown in Figure[I]), the former often introduces substantial
topological noise, where redundant global signals contribute little to optimization or generalization.
As for the latter, building upon the upstream GNN results, the Transformer merely re-encodes already-
captured information, limiting its effectiveness. From the lens of GNNs, Transformer can be seen as
learning a new shift operator over a complete graph (i.e., the attention matrix) and applying it for
low-pass filtering (i.e., neighbor aggregation). If key inductive biases lie in localized structures, this
relaxed low-pass channel setting may lead to a form of representational "laziness" in the attention
mechanism. Enforcing sparsity in attention to contain such locality is theoretically appealing, but
computing the full QK remains costly. Therefore, our focus naturally shifts to diversifying the
filtering channels, offering a new path for bridging GNNs and Transformers.

Based on the above analysis, we innovatively extend the Transformer into a band-pass global-aware

graph filter — G2Former, departing from the conventional cascade fashion. The band-pass property
allows the Transformer to adaptively learn graph spectrum determined by the graph topology under
different channels. This channel diversity encourages the attention mechanism to move beyond pure
similarity modeling between node pairs, thus exerting a certain regularization to facilitate better
generalization for GNNs. The details are as follows:

e Rather than advocating a naive combination of GNNs and Transformers, we propose G?Former, a
structurally extended architecture from the perspective of graph signal processing. Under multi-
channels, G2Former induces Transformers to generate guided noise that enhances node features,
thereby benefiting the inference of downstream GNNSs. This constitutes a novel global-to-local
framework that effectively addresses the aforementioned "laziness" issue.

o GZ2Former theoretically supports band-pass filtering at arbitrary frequency bands, thereby satisfying
constraint requirements and adapting to diverse graph structures. Attention mechanism enables a
node feature—driven and learnable graph spectrum, challenging the traditional view of topology as a
fixed prior in graph filtering. We design and discuss two channel initialization strategies to highlight
the importance of channel constraints. And G?Former retains linear computational complexity.

e Extensive experiments on 17 datasets of real-world node classification - covering homophilous,
heterophilous, and large-scale graphs with millions of nodes - demonstrate our claims. We hope this
work helps break the current dilemma in GTs research and revisit the positioning of Transformers
for the field. Our code is available at https://github.com/Thankstaro/G-2Former,

2 Background

This section presents preliminaries in two relevant areas: Transformers and graph filtering.


https://github.com/Thankstaro/G-2Former
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Figure 1: SGFormer [63] and Polynormer [[13]] correspond to two distinct GT architectures: local-and-
global and local-to-global, respectively. We report their training and test cross-entropy losses across
various datasets. SGFormer_gny retains only the fine-tuned GCN backbone, while Polynormer_gnn
keeps only its local attention mechanism (which is GNN-like). (a)-(f) correspond to homophilous
graphs, and (g)-(1) to heterophilous graphs. These two GTs fail to provide significant test improve-
ments for their GNNs and even underperform compared to standalone GNNs on some datasets.

Transformers. For a general self-attention Transformer architecture [56]], each layer computes
attention scores between every pair of samples, yielding an attention coefficient matrix. This matrix
is then used to linearly reconstruct the sample features and update the representation at the current
layer. For example, given a sample feature matrix X € R™*9, the self-attention can be computed in
the following two ways:
KT K)Tv

)V,X/ — J(Q)(U( )T )’ (1)
Va (Q)(e(K)T1)
where Q = XWp, K = XWg,V = XWy, are the query, key and value matrices. Wq €

RdXd/, Wi € RdXd', Wy € R%d" are trainable matrices, 1 € R"*! is an all-one vector, and
o is the sigmoid function. The first equation is the commonly used explicit computation of the
self-attention coefficient matrix, but it is computationally expensive, requiring O(n?) operations. The
second equation is a linear attention [25]] formulation, which leverages a simple kernel trick to reorder
the computation and reduce the complexity to O(n). Division by o(Q)(o(K)7 1) ensures that each
row of the attention matrix sums to 1. GTs typically integrate the graph adjacency matrix with the
attention matrix, or apply graph convolution before feeding the features into the Transformer.

X" = softmax(

Graph Filtering. For an undirected attributed graph G = (£,V, X), &,V are the sets of edges and
nodes, X is the node attribute matrix. Let A be the adjacency matrix of G, the symmetric normalized

Laplacian L = Djl/ 2 (]? — A)D~'/2, D is the degree matrix of A. Perform the eigenvalue
decomposition on L, i.e. L = UAUT. U is the eigenvector matrix, A = diag([A1, A2, ..., A\n]). A;
is i-th eigenvalue of L, 0 = A\; < Ag--- < )\, < 2. Assume that x € R™*! is a signal of G, g(A) is

the frequency response function, the graph filtering can be formulated as:
F(L)x = Ug(A)UTx. )

First, transform x into the spectral domain via the graph Fourier transform [49] X = UTx. N
indicates the frequency magnitude of the graph Fourier basis U;, a designed g(A) is applied to
amplify or suppress corresponding frequency components, and the signal is then mapped back to



the spatial domain via the inverse graph Fourier transform Ux to complete the filtering process.

F (L) is referred to as the graph filter [11} 43]]. Combining multiple distinct designed F (L) enables
multi-channel [54] or mixed-channel [34] filtering.

3 Methodology

In this section, we provide a detailed explanation of the proposed method. In Section[3.1] we describe
how Transformer is extended into a global-aware graph filter with band-pass characteristics, along
with two different strategies for channel initialization. In Section [3.2] we present the method for
generating guided noisy samples from multiple channels and performing graph-guided filtering
to enhance node features for downstream GNN training or inference. Finally, we introduce the
G?Former framework, its optimization objective, and provide theoretical analysis (including the
computational complexity) in Section[3.3]and [3.4]

3.1 Global-Aware Graph Filters

As shown in Equation |1} self-attention can be viewed as a form of topology reconstruction (graph
structure learning) followed by message passing over the updated topology. From the perspective of
GNNSs, the behaviors of both are highly similar. To address the "laziness" that arises when combining
it with GNN’s and to fully leverage their global receptive field, we develop the band-pass property

of the Transformer. We follow the common setting of Sectionthat denote Q; = T@.T, U(Q Kl =

TR o(K), 7Q' R%‘ﬂ K € R%dl, o is the sigmoid function. Let Ag = Q'K'”, if Q' and K’

do not share parameters, As = 1(Q’ K'+KQ T), ensuring that Ag is a symmetric matrix.

Similarly, I:S = Dgl/Q(DS — AS)D?/Q, Dy is the degree matrix of Ag. We define a band-pass
global-aware graph filter as follows:

(Ls)*(21 — Ls)? _ (Lg)*(21 - Lg)”

(Ls7 @, f3,0)= fOQQS()\)d)\ _f02>\a(2—)\)ﬂd)\7

3

where © = {Wg, Wi}, Tis the identity matrix, gg(\) is the frequency response function of
(Ls)*(2I — Lg)”. a, B € N are the band control coefficients. © enables the filter to adaptively learn
the graph topology, thereby adjusting the graph spectrum. f02 gs(A)dA represents the area under the

curve of gs(\), acting as a normalization term for F(Lg; v, 3, ©) to prevent numerical explosion
due to over-amplification, it can be written as:

2 2 X2
j/ A“(2——A)ﬁdA::2a~25j/(Aﬁa(ggggqﬁdA. 4)
Let \/2 = t, it can be rewritten as:
2 . 1
2a.2ﬂt/’(g)a(géfi)BdA::2a+B+1jf t(1 —t)Pdt. 6))
0 0

Note that fol t(1 — t)Adt is the Beta function B(a + 1, 3 + 1). According to the relationship [[12]
between the Beta function and the Gamma function I', we can get:

! T(a+DI(B+1)
a+B+1 a B _ ga+(+1 |
2 At(lt)“_Q Ia+p+2) ° ©®

Hence, the final expression of the filter is:

D(a+8+2)(Ls)* (21 - Ly)? -
Da+ DI(3 + 1)20F7F

(LS7 aﬁa )_

where I'(a + 1) = !

Asis well known,~1~4 5,2I-Lg correspond to high-pass and low-pass channels, respectively. Therefore,
when o < 3, F(Lg; «, 3, ©) focus on a certain low-frequency range; conversely, it passes signals
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Figure 2: The architecture of G?Former and its comparison with previous works. The modules
marked in contain learnable parameters. & denotes the fusion of topological information with

the self-attention mechanism. Att: self-attention computation. ® represents the computation of Ly

as described in Section 3.1} and C corresponds to Equation 6}

in a certain high-frequency band. We can adjust the frequency band that the filter emphasizes by
tuning «, 8. For F(Lg; > 0,0,0) and F(Lg;0, 5 > 0, ©), they are also high-pass and low-pass
channels, respectively. In our implementation, two feedforward networks (FFNs), fo, and fy,, are
initialized. Specifically, fg, serves as a replacement for {W¢q, Wi} (Q = K = fy, (X)), while fp,

maps X into a latent space prior to filtering, and © = {6, 65} now.

Channel Initialization. We introduce two channel initialization
strategies: full-spectrum and low-spectrum (in Figure [3). We use
) to denote the pass-band of a specific channel, and g()\) repre-
sents the average frequency response within that channel. Assuming
Athre = 1 as the threshold, [0, 1] corresponds to the low-frequency
band, while (1, 2] represents the high-frequency band. The full-
spectrum filter bank is denoted as {F(Lg;i,a + 5 —,0) | i €
{0, .., a+S}}, and low-spectrum filter bank is { F (Lg; ¢, a+, ©) |
i € {0,..,a + B}}. In general, node classification tasks primar-
ily rely on low-frequency components, which may make the low-
spectrum initialization sufficient without the need to incorporate
high-frequency signals. However, such a compromise can be detri-
mental to attention mechanisms. Focusing solely on low-frequency
signals may still lead to underconstrained behavior, whereas full-
spectrum coverage provides a more principled solution. A detailed
discussion can be found in Section[£.3]

3.2 Graph-Guided Filtering

Inspired by guided filtering [21]], we attempt to use the graph filter
introduced in Section [3.I]to generate guided noisy samples that en-
hance the original node features and facilitate downstream GNNs
training and inference. By adjusting «, 3, the guided noise en-
compasses features from various channels (low-pass, high-pass, or
band-pass) and retains a global perspective. This design aims to cir-
cumvent model overfitting caused by a single relaxation channel. In
the field of image processing, the guided filter is defined as follows:

q; = arl; + by, Vi € wy. (8)

This means that the filtered image ¢ is a linear transformation of
the guidance (or guided noise) I within a local window wy,. With
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reference to the above equation, we define graph-guided filtering kernel as follows:
X,’L :aiNi—&—(l—ai)Xi,ai S [O, 1],7;20,17..,?1—1, (9)



where a; is the weight. In this case, the filtered attribute X’ is the linearly weighted sum of the original
attribute X and the guided noise N. Graph-guided filtering is not determined solely by the guided
noise; the incorporation of original features serves as a residual connection, which facilitates more
effective model training. When «, § are fixed, the guided noise under different channel initialization
strategies can be computed as follows:

N = 2y FLssi,at f—i,0) fo,(X) (10)
>4 F(Lsii,a + B, 0) fo, (X)

The weight a € R™*! in Equation E] is provided by the model and is updated at each iteration.
To obtain the wights, we initialize a predictor fy,, parameterized as a fully connected layer, a; =
max(fg,(N;)). fo, is optimized by computing the loss with respect to the training labels, which
differs from the way it is derived in Equation [§] While traditional guided filtering minimizes the error
between the filtered and original images, our graph-guided filtering adaptively assigns weights based
on the confidence of the guided noise. This filtering approach injects the guidance into X, balancing
the correlation of the filtered result with both the original features and the guidance.

3.3 The G2Former Architecture

This section presents the architecture followed by G?Former and highlights its differences from
previous works. Subsequently, we introduce the optimization objective of the model.

Global-to-Local Scheme. Previous GT architectures can be mainly categorized into two classes:
Local-and-Global and Local-to-Global. As analyzed in Section [l we propose a Global-to-Local
scheme. The "Global" component is placed upfront to generate guidance via the global graph filter
bank, enabling graph-guided filtering. This is then followed by downstream "Local" encoding. Our
design is orthogonal to the choice of downstream GNNs, allowing users to flexibly plug in various
customized GNNs. At this stage, the Transformer generates guidance under the constraints of multiple
channels, which distinguishes it from the conventional stacked or cascade encoding approach with
GNNs. This design effectively improves the coordination between the two components. The detailed
architecture is illustrated in Figure [2]

Optimization Objective. In general, the optimization objective of typical GTs only involves the
cross-entropy loss between the predicted probabilities and the ground-truth labels. In contrast,
G?Former introduces an additional cross-entropy loss term. As shown in Equation @ obtaining
the weight a for generating the guidance also requires supervision from the labels. We initialize
a separate predictor fy , fo, (as mentioned in Section for the final encoded representation
GNN(X') and the guided noise N, respectively, to compute their corresponding loss terms. Let
P = fy,(GNN(X")), P" = fy,(N) the overall loss can be expressed as:

K-1 K-1
L=— Y D YWPE - > > Y,[khPk, (11)

VE€EVirain k=0 VE€EVtrain k=0

where Vy,qin 1S the set of training nodes, Y € RnxK

number of classes.

is the ground truth label matrix, K denotes the

3.4 Theoretical Analysis

This section provides a theoretical analysis of G2Former, focusing on the filtering properties of the
global-aware graph filter and the time complexity.

Theorem 3.1. Consider a > 0,8 > 0, when a+j — oo, {F(Lg;i,a+B—1i,0) | i € {0, ..,a+8}}
and {F(Lg;i,a+ 3,0) | i € {0,..,a + §}} are capable of covering any specific frequency band
within the range (0,2) and (0, 1], respectively.

The proof can be found in the Appendix [A] Theorem 3.1 highlights the strong capability of global-
aware graph filters and underscores the importance of the hyperparameter o+ /3. An increase in o+ 3
leads to greater diversity among filtering channels, which improves the quality of the guidance signals.
Additionally, the shared use of the FENs (i.e., fy,, fo,) across more channels imposes stronger
regularization on the Transformer and effectively prevents it from overfitting to a limited number



Table 1: Comparison between our model and the baselines over homophilous graphs (%). The
reported metric is Accuracy.

| Cora CiteSeer = PubMed Computer Photo CS Physics WikiCS

GrathPS 83.12i1_15 72~7Oi125 79.96i0‘15 91.80i0‘55 94.83i0‘15 94-00i0.21 96.51i()‘20 78.63i()‘45
NAGphormer | 80.35+110 70.124150 80.0214110  91.651035 961240107 95814019 97.331011 77951086
EXphormer 83.2211_35 71.88;&1_]5 79.65:t0.75 91.55;&0.22 95.62:&0.42 96.0010_27 96.90:&0_13 79-26:t0.60
GOAT 83204120 72.024127 79.601061 92321042 944310220 93724021 96.374025 77971060
NodeFormer 82.12i0.95 72.271121 80.10i0.73 87.12i0‘4g 93~40i0.65 95-71i0.29 96.45i0‘27 75~15i0.99
SGFormer 84.72i0_77 72'70i1A10 80.63i()‘44 92~42i0,67 95.60i0‘35 95~75i0.25 96.70i()‘23 80. 10i0A47
Polynormer | 83331089 72204095 79.124051 93.764015 96.601025 95.304020 97204000 80.1240585
Spexphormer 83.1011_03 71.8610_36 79-33:t0.64 91.1210,11 95.3510_45 94.9010_17 96.71:&0_]0 78.12i0_77

GCN 84.561071 72281049 8L1640s0 93.951015 96121050 96.124010 97444012 80.334057
GI’aphSAGE 83.68i0,55 72~21i0,44 79~70i0.64 93.2210.17 96.71 +0.25 96.33i0.]5 97.1Oi0411 80.61i0433
GAT 84221075 72221087 80.1241072 94.011011  96.6310314 96.201013 97.261009 81.011057

GQFOI'IIICI' ‘ 83.7210_55 72-6210.63 79-30:t0.68 94.29:&0»10 97.0610_10 96.53:&0_09 97.6010_05 81-14:t0.22

of channels. Nevertheless, a 4+ ( should not be excessively large. Beyond the risk of performance
degradation due to over-regularization, redundant channels just incur additional computational cost.
In line with Occam’s Razor [2], the number of channels should be kept minimal yet sufficient. We
further discuss it in Appendix [B.T]

Time Complexity. The main computational cost of G>Former lies in the Transformer-based global
graph filtering (i.e., Equation[I0) and the downstream GNN encoding. It is important to note that the
computation must follow the linear attention computation order described in Equation [T} otherwise,

its complexity would increase to O(|V]?). For example, Lg fs, (X) is equal to:
fou(X) = D3 AsD ! 5, (X) = fo,(X) = D3 H(Q (KT (D5 fo,(X))).  (12)

where Dg = diag(Q’(K'"1)). So global graph filtering only needs O((a + 8)|V|d’?). The
complexity of the GNN is O(|€|), and with the additional cost of the feed-forward network (FNN)
being O(|V|dd'), the overall complexity of G*Former is O(|V| ((a + 8)d’? + dd') + |£|). Hence,
G2Former still has linear complexity with respect to the number of nodes and edges.

4 Experiments

We conducted extensive evaluation experiments on three types different real-world graph datasets
(including homophilous, heterophilous and large graphs) to verify the effectiveness of G2Former.
Specifically, we first evaluate the performance of G2Former on these node classification datasets,
addressing the question of whether Transformers can benefit GNNs. We conducted ablation studies
on two types of channel initialization strategies and global attention module (including test error and
visualization). In addition, we perform a sensitivity analysis on the number of filtering channels in
Appendix Finally, we report the training and inference cost of G>Former to demonstrate its
scalability in Appendix[B.2]

Experimental Setup. Appendix provides detailed statistics and splitting of the 17 standard
datasets (8 homophilous, 6 heterophilous and 3 large graphs). Note that for heterophilous datasets,
we use the new version [46] of Chameleon and Squirrel, which removes overlapped nodes. The
baselines mainly include 8 state-of-the-art GTs (GraphGPS [47], NAGphormer [7], EXphormer [52],
GOAT [27], NodeFormer [62], SGFormer [[63]], Polynormer [13] and Spexphormer [53]]) and the
three well-tuned classic GNNs: GCN [26], GraphSAGE [20] and GAT [57]]. Detailed descriptions
and hyperparameter configurations can be found in the Appendix We use the official
implementations or public benchmarks [36]] of baselines whenever possible. We follow [36]] or
their configurations to tune the hyperparameters for better performance. We report the mean and
standard deviation over five independent runs. The experimental environment details and the specific
hyperparameter settings for GZFormer are also provided in the Appendix and Appendix ﬁ

4.1 Performance on Diverse Graphs

Performance comparisons on homophilous, heterophilous, and large-scale graphs are presented
in Tables and 3| respectively. The best and second-best results are highlighted in bold



Table 2: Comparison between our model and the baselines over heterophilous graphs (%). The
reported metric is ROC-AUC for the Minesweeper and Questions and Accuracy for all others.

| Squirrel Chameleon Amazon-Ratings Roman-Empire Minesweeper Questions

GrathPS 39.6812469 41.23:&3,39 53~33j:0.69 82.451()‘57 90.6610.39 72,33:&1,32
NAGphormer 39.33:“'20 41-72i4.61 51 ~42i0.68 74~49i0.66 85.03i0.77 6845i 1.23
EXphormer 39.80:“_67 39. 13j:3.16 53-3410.38 89. 13i0.41 90-3810.63 74~01i1.10
GOAT 35.05:‘:1‘29 35.06;{:577 45.1 1j;0_59 71.88;{:093 81.88i1_33 75-80j:1,7l
NodeFormer 38.771267 36.33:&4‘09 43.8010.59 74-901085 87.7310.67 74.98:&1'53
SGFormer 42.6012440 44.32:&3.91 54»0410.60 80. 1010‘49 91.4310.45 73.83:&0,69
Polynormer 42-05:t2.37 41.88i3'gg 54.96i0.29 92.56i0'35 97~50i0.49 78.91i0.30
Spexphormer | 40.331,79  40.30139 5327 +077 83.03 1069 90.73 1023 73.02+0.76
GCN 45.031168 44911457 53.824076 91.23 102 97.79 1028 78.9240.62
GraphSAGE | 41334162  44.804453 55.144023 91.0240.2; 97.73 4052 77.2041 32
GAT 41811016  44.224429 55.161021 90.41.10.17 97751005 77901059
G2Former ‘ 45531176 44341439 55.86.0.13 93.03.033 99.45 .12 79.554031

and underlined, respectively. On homophilous graphs, G*Former improves the generalization
performance of the best-performing GNNs by 0.16%-0.36%, and that of the best-performing
Graph Transformers by 0.28%-1.27%. GNNs generally perform well on homophilous graphs,
which can be attributed to the compatibility between their low-pass filtering nature and ho-
mophily. Notably, SGFormer achieves the best performance on Cora, Citeseer, and PubMed,
but performs poorly on other real-world datasets. In contrast, Polynormer does not overfit to
these three toy datasets and demonstrates relatively strong applicability among existing GTs. On
heterophilous graphs, G>Former yields generalization improvements ranging from 0.51% to
1.7% over the best-performing GNNs, and from 0.51% to 6.88% over the best-performing GTs.
The advantage of G?>Former is particularly evident

in heterophile graphs, which typically exhibit more Taple 3: Comparison between our model and

complex connectivity patterns - where the labels of  the baselines over large graphs (%). The
neighboring nodes often differ from those of the cen-  reported metric is Accuracy. OOM means

tral node. The global graph filter in G*Former exhibits gyt of memory.
band-pass characteristics, enabling it to capture both

low and high-frequency components on heterophilous | ogbn-arxiv  ogbn-products pokec
graphs. In contrast, both GNNs and existing GTs Type | Homophilous Homophilous  Heterophilous
are single-channel (i.e., low-pass only) and thus inca- ~ GraphGPS | 71.10405 OOM OOM

. . . . NAGphormer 70.90-0.29 74.33 1025 76.10+0.65
pable of effectively capturing high-frequency signalS. “gxphormer | 7211505 OOM OOM
For large graphs, G2Former provides generalization GOAT 72.811031 82.29.0,6 72.5007
. . £ 0.2% 0.6% h NodeFormer 67.66-10.26 74.10+053 71.00+1 30
1mprovements ranging from 0.27 to 0.67 over the  sgrormer 1242100 81.66.0.1 82.33,071
best-performing GNNs, and from 0.04% to 0.9% over ~ Polynormer | 73.33.02 83614015 86.0110.20

. . Spexphormer 70.844033 82.10+0.50 74.80+0.15

the best-performing GTs. Its advantage remains more N < T sca1
pronounced on heterophilous graphs. As the scale Of  GuphSAGE | 73,0520 8347 1o 85.00 00t
heterophilous graphs increases, the performance gap GAT 73.302023 80.90-020 86.12022
among GTs also widens, which is closely related to _G?Former | 73.631025 83.98-+003 86814006

the design of their attention modules. In such scenar-

ios, the introduction of overly complex mechanisms may limit its applicability. Overall, G>Former
contributes to better generalization in GNNGs, yet it falls short of surpassing the inherent performance
ceiling imposed by GNNs.

4.2 Test-time Behavior of Attention Mechanism

This section investigates the encoding capacity of attention modules within GTs, this aspect that
has been largely overlooked in prior work. To reveal the inherent differences, we remove the GNN
component and train only the attention module for encoding. We compare the attention mechanisms
of two top-performing GTs—SGFormer and Polynormer—and report their test errors after training,
as shown in Figure E} In Figure @] and Figure the regularization effect of G2Former’s attention
is evident, effectively suppressing test error oscillations. Even in more stable cases, G>Former’s
attention consistently maintains the lowest loss levels. This experiment demonstrates that under
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Figure 4: A comparison of the test error behavior of the attention mechanism in G?Former versus
those in the other two GTs.
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Figure 5: Visualization of the attention mechanisms of the G2Former, SGFormer, and Polynormer,
along with Polynormer-GNN and the corresponding label matrix.

multi-channel constraints, GZFormer’s attention can adapt to various types and scales of graphs,
effectively avoiding the introduction of excessive detrimental topological noise into the GNN.

4.3 Channel Initialization Strategies

This section investigates the differences between the two
channel initialization strategies (full-spectrum and low- .. compuer . e L Physics

spectrum) described in Section [3.1] with the results pre- . 4 =
sented in Figure[6] The dashed line indicates the perfor- - l I
" Romangmpre

mance of the best-performing GNN. Performance degra-
dation is observed on 11 out of the 12 datasets, with the
exception of ogbn-arxiv. Moreover, on four homophilous
graphs — CS, Physics and WikiCS — the results are even
worse than those of the best-performing GNN. This pro- "o ™ opnanv  ogonprosies o
vides strong evidence for the necessity of high-frequency .. = o oo e = L B
channel constraints. If the attention module only covers : -

the low-frequency band, it may still exhibit "laziness" in
learning. The inclusion of high-frequency components
helps to capture edge patterns (i.e., heterophilous con-
nections), thereby mitigating the influence of trivial or  Figure 6: Performance under different
spurious connections learned by the module. For het- channel initialization strategies.
erophilous graphs, the target signal is relatively dispersed

across the frequency spectrum and less concentrated in the

low-frequency band [3}[9]]. This spectral dispersion makes the low-spectrum filter bank less prone to
overfitting, but the inability to capture components that reside in the high-frequency range still limits
its performance.
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4.4 Visualization

To further investigate the role of attention mechanisms in GTs, we randomly sample 100 nodes on
Minesweeper to visualize them in Figure[5] Compared to the label matrix, the node representation
similarity produced by Polynormer-GNN aligns closely with the ground truth. Despite the inclusion
of an attention module downstream, no performance gain over the GNN is observed. And the close
resemblance between Polynormer-Attn and Polynormer-GNN further indicates that its attention layer
mainly repeats the already captured features. In contrast, SGFormer introduces substantial topological
noise through its attention mechanism. In G2Former, the multi-channel constraint plays a crucial role:



spurious connections are effectively suppressed, while falsely missing edges still receive relatively
high attention scores. As observed in the highlighted regions, this sparsity effect is reminiscent of
Lasso Regression [55]]. G?Former tends to emphasize the intersection of above different attention
mechanisms, thereby guiding the downstream GNN to focus more on essential features.

5 Conclusions

This paper clarifies that Transformers do not empirically provide a universal performance boost for
Graph Neural Networks, but are better suited as a form of data augmentation to enhance generalization.
We introduce a global-aware graph filtering framework with multi-channel constraints that stabilizes
attention, promotes feature focus, and reduces overfitting. Our findings highlight the value of
revisiting the intrinsic structure of graphs over increasingly complex network architectures.
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be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification:
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification:
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification:
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification:
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification:
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: This work is not expected to pose any specific societal impacts beyond those
associated with existing graph neural network models.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our model does not fit in high-risk or misusable models.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification:
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A The Proof of Theorem 3.1

Proof. In the following content, we abbreviate the two channel initialization strategies {F (f;S; 1,0+
B—1i,0) | i€ {0,.a+p}} and {F(Lsii,a + B,0) | i € {0,..,a + B}} as Fyuy and
Flow- respectively. Each filter F (]35; a, 3,0) among them, its frequency response function is
£9s(A) = £A%(2 — )P, C corresponds to Equation @ Consider « > 0,5 > 0, A € [0,2],
A ~ gs()\), we use the mean A\ = E(A) to represent the band-pass frequency of gg () like Figure

For Fryu, E(A) is written as:

/‘Ags YA = /‘AAAQQ—MQM

(13)
= [ AT 2= )P
[ ey
According to Equation[d} [5] [6] we can get:
A2 — N)PdA
),
_ (O( + ﬁ + 2) . 2a+5+2 X F(a + Q)F(B + 1) (14)
T T(a+ 1)I(B+ 1)20+5+1 I'(a+5+3)
 2(a+1)
a4+ p+2
Similarly, the mean FE(A?) can be written as:
1 (2
<MA%:47/)X“%2—AWdA
CJo
_ Fla+p5+2) gatprs L@+ 3)T(B+1) (15)
I(a+ 1)I(B + 1)20+8+1 Fa+5+4)
B 4la+1)(a+2)
(a+B+2)(a+B+3)
The variance Var(A) can be written as:
Var(A) = E(A%) — (E(A))?
 da+1)(a+2) _<2m+n)2
C(@+B+2)(a+B+3) \a+B+2 (16)
__ Mo+ DB+
(a+B+2)2(a+B+3)
24
If « + 3 — oo, Var(A) = —<aféi§>l)gﬁé)+a> — 0, E(A) = Q(f;:% — (f—fﬁ = %fl. Let
r=5¢€ (0, 400), E(A) — T_H It means that F,,;; can concentrate on any E(A) € (0, 2), which

completes the proof of the frequency band coverage property of F ;.

For Fjou, its coverage within the interval (0, 1) can be referred to Fy,y. For the last filter {F (I: s;a—+
B,a+ (,0) in Fioy, where z = 1, we have E(A) = 1, the band-pass frequency of JFi,, reaches its
maximum. Hence, the frequency band coverage range of Fiqy is (0, 1].

O

B Additional Experiments

B.1 Sensitivity
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Figure 7: Effect of varying 7' on model performance, 7" = o + 3.
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Figure 8: Visualization of the attention mechanisms of the G?Former, SGFormer, and Polynormer,
along with Polynormer-GNN and the corresponding label matrix.

AS a Critical hyperparameter in G2F0rmer, T = o + B Training and Testing Loss over Amazon-Ratings
directly controls the extent to which the attention mecha- 4] — T=1-Train
nism is constrained. To assess its impact, we performed —— T=1-Test W
a sensitivity analysis, with the experimental results shown 3{ — T=8-Train
in Figure[7} In conjunction with Table[T2] the optimal , | — 7=8-Test W
8 —— GCN - Train
number of filters tends to concentrate between 2 and 4 32 GONTEE: //"W
across both homophilous and heterophilous graphs. The
maximum number of filters is used in homophilous graphs
(e.g., Wikics, T=7), while the minimum appears in het-
erophilous ones (e.g., Amazon-Ratings, T'=1). A possible 200 400 600 800 1000
explanation is that, in homophilous graphs, due to the Epoch
abundance of homophilous connections, single-channel
attention mechanisms (i.e., low-pass filters) tend to in-
duce nearly fully connected graphs, introducing substan-
tial topological noise—particularly when the number of
classes is large. Larger T" impose stronger constraints, which help suppress spurious connections.
Heterophilous graphs present more complex challenges, often requiring manual tuning to apply
appropriate levels of constraint. For more difficult datasets (e.g., Amazon-Ratings), overly strong
constraints may hinder the downstream GNN from effectively focusing on the most relevant features.

Figure 9: Training and Testing Loss over
Amazon-Ratings under different 7'.

Taking Amazon-Ratings as an example, Figure [§]illustrates that increasing 7" from 1 to 8 leads to
minimal changes in the attention module, indicating the presence of redundant channels. Figure[9]
presents the training and testing losses of G2Former under 7=1 and 7T'=8. As shown, while 7=8
achieves the most stable test loss, the performance begins to fluctuate (see Figure[7b)), suggesting
that the constraint may be overly strong. Specifically, when 7" becomes too large, fy, also must
update parameters across a greater number of channels, thus increasing the optimization difficulty. In
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Table 4: Runtime/Epoch (including training, validation, and testing) on large graphs (s).

Dataset \ ogbn-arxiv  ogbn-products  pokec
SGFormer 0.33 11.13 743
Polynormer 1.33 15.06 7.24
G*Former |  1.39 10.63 6.04

Table 5: Performance of band-pass filters under different heterophilous levels.

Dataset Photo ogbn-products \ pokec Minesweeper
Hete. 0.1674 0.1887 \ 0.5552 0.2815
X 0.5466(0.07/0.06)  0.5043(37.80/37.16) | 0.5299(27.56/24.45) 0.5544(0.97/0.78)
Fo 0.6835(3.27/1.52) 0.4895(0.58/0.60) 0.5311(1.02/0.90)  0.5855(0.25/0.18)
Fi 0.6835(6.55/3.03) 0.4892(1.72/1.80) 0.5310(3.02/2.67)  0.5855(0.96/0.68)
Fo 0.6835(3.27/1.52) 0.4891(1.72/1.80) 0.5310(2.98/2.64)  0.5864(1.40/0.98)
F3 - 0.4889(0.57/0.60) 0.5309(0.98/0.87)  0.5873(0.90/0.63)
Fu - - - 0.5882(0.22/0.15)
X’ 0.6698(12.36/6.09)  0.50(25.82/25.82) | 0.5288(14.69/13.09) 0.5835(2.94/2.10)

contrast, with T=1, the test loss lies between that of 7=8 and tuned-GCN, indicating a more suitable
level of regularization.

B.2 Scalability

Table E] reports the runtime per epoch (including training, validation, and testing) of G?>Former
and the other two SOTA linear GTs. Note that full-batch training is used for ogbn-arxiv, while the
remaining two datasets share the same batch size setting. The results indicate that G? Former incurs a
computational overhead comparable to linear GTs, which is consistent with the complexity analysis
in Section The GNN backbone of G?Former relies solely on efficient operations supported by
modern graph learning frameworks (e.g., PyG, DGL), while the global-aware filter consists only of
linear matrix multiplications. Therefore, we believe G>Former to be highly efficient.

B.3 Effect of Graph-Guided Filtering

In Table[5] we present the response of different spectral channels under varying levels of heterophily,
where heterophily (Hete.) is defined as the proportion of heterophilous edges among all edges. The
table reports the Dis(Dispete/DiShomo), for X and X', representing the features before and after
graph-guided filtering, respectively. J; denotes the filter associated with the i-th channel, where
a larger ¢ corresponds to higher-frequency bands. As shown in the table, for smaller-scale graphs
such as Photo and Minesweeper, graph-guided filtering tends to enhance the distinction between
heterophilous node pairs, resulting in increased Dis scores in X’ . In contrast, for large-scale graphs
such as ogbn-products and pokec, the filtering operation exhibits a compressive effect on node
attributes, reducing both Dis_hete and Dis_homo. Nevertheless, the overall feature distribution
remains close to the original, as reflected by similar Dis scores before and after filtering. These
findings highlight the adaptive role of graph-guided filtering: enhancing local discriminability in
smaller graphs, while promoting feature compactness in larger graphs without significantly distorting
the global structure.

B.4 Results in Comparison with Heterophilous and Spectral GNNs

In addition to H2GCN [71] and FAGCN [3]], we also provide experimental results (In Table @ our
method consistently demonstrates superior performance across various benchmarks.) of CPGNN [72],
GPRGNN [9], FSGNN [38]], and GIoGNN [31]]. We also provide a comparison between our method
and these spectral GNNs (BernNet [22]], JacobiConv [S9], OptBasisGNN [19] and UniFilter [24]), as
shown in Table[7] [B]below. The best performance is highlighted in bold. Our method still demonstrates
superior performance.
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Table 6: Comparison of model performance on heterophilous graphs.

Dataset Squirrel Chameleon Amazon-Ratings Roman-Empire Minesweeper  Questions
Metric Accuracy Accuracy Accuracy Accuracy ROC-AUC  ROC-AUC
H2GCN 34751097 27.8043387 36.4040.29 60.0140.48 88.6510.37 62.374+1.13
FAGCN 36331162 34.671319 40.2810.63 62.8910.77 50.1941 34 67.9941.51
CPGNN 30.01:5:2‘11 32.75:5:3‘79 38.66:5:0,62 62.37:5:0'44 52.01:|:()_73 65.97:}:1,67
GPRGNN  39.011206 39.64133s3 45.0210.33 65.1310.71 85.2640.58 54.3841.49
FSGNN 349917497 40.331359 51.87410.81 79.6540.41 90.1140.77 78.8540.02
GloGNN 35364214 23991437 36.97+0.17 60.2140.67 51.2641.12 65.3241.98
Ours 45053:‘:1476 44.34:‘:4‘39 55.86:‘:0'13 93.03:‘:0'33 99.45;&0_12 79-55:t0.31

Table 7: Comparison of model performance on homophilous graphs.

Computer Photo cs physics wikics

BernNet 92.63+0.5 94.65+0.2 94.77£0.3 96.54+0.1 75.294+0.5
JacobiConv ~ 92.32+0.2 93.764+0.1 94.21+0.5 96.17£0.1 75.47+1.1
OptBasisGNN  91.04+0.4 95.31£0.3 95.66+0.6 96.81+£0.1 77.63+0.9
UniFilter 93.20+0.3 93.98+0.4 93.22+0.1 96.77+0.3 78.82+0.7

G>*Former 94.294+0.1 97.06+0.1 96.53+0.1 97.60+0.1 81.14+0.2

B.5 Comparison of Generalization Gap

We report the model’s generalization gap [65] in Table [0} [I0] below. The tuned GNN refers to the
classical GNN that achieves the highest performance score on the corresponding dataset. Our method
consistently achieves the lowest generalization gap.

C Dataset and Baselines Details

C.1 Dataset

Table [I1] presents detailed statistics of the 17 datasets used in our experiments. For the train-
ing/validation/test splits, we directly adopt the splits from [36] (0.6/0.2/0.2) for Computer, Photo,
CS, and Physics. Squirrel and Chameleon follow the version of [46], which removes duplicate nodes.
The remaining datasets use the official splits [32} 23] 39].

Specifically, Cora, CiteSeer, and PubMed [50] are widely used toy citation networks. Computer and
Photo [51]] are co-purchase networks where nodes represent products and edges indicate frequently
co-purchased items. CS and Physics [51]] are co-authorship networks, with nodes denoting authors
and edges representing collaborations. WikiCS [39] is a citation network of computer science papers.

Squirrel and Chameleon [48§]] are two widely studied Wikipedia page networks centered around
specific topical domains. Other 4 heterophilous datasets [46]]: Roman-Empire is a word-level graph
constructed from the Roman Empire Wikipedia article, where nodes represent individual words and
edges link words that are either sequential or syntactically related. Amazon-Ratings represents a
product co-purchasing network, with nodes as products and edges connecting items frequently bought

Table 8: Comparison of model performance on heterophilous graphs.

amazon_ratings roman_empire minesweeper questions

BernNet 50.70+0.6 88.71+0.7 89.76£0.5  76.04+0.7
JacobiConv 52.394+0.4 89.32+0.3 91.62+0.3  76.11+£1.0
OptBasisGNN 52.11£0.4 88.94+0.6 93.50+1.2  77.23+0.8
UniFilter 53.66+0.7 91.324+0.6 92.38+0.7  77.56+£0.9
G*Former 55.86+0.1 93.03+0.3 99.45+0.1  79.55+£0.3
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Table 9: Generalization gap on homophilous graphs.

Computer Photo cs physics wikics
SGFormer 0.2650 0.1356 0.0963 0.0719 0.9439
Polynormer 0.1454 0.1622 0.0574 0.0911 0.8236
tuned GNN  0.0893(GAT) 0.2341(GraphSAGE) 0.0874(GraphSAGE) 0.0089(GCN) 0.4402(GAT)
G?Former 0.0686J. 0.0053] 0.0196], 0.00514 0.3657]
Table 10: Generalization gap on heterophilous graphs.
amazon_ratings roman_empire  minesweeper questions
SGFormer 8.2326 0.8225 0.3561 1.7627
Polynormer 3.3355 0.6561 0.3393 0.7404
tuned GNN  4.0764(GAT) 0.6327(GCN)  0.3475(GCN) 0.3036(GCN)
G?Former 2.0837/ 0.4242] 0.0900J 0.2411])

together. Minesweeper is a synthetic dataset, modeling a 100 x 100 grid where nodes are grid cells
and edges connect adjacent cells. Questions is a user interaction graph derived from the Yandex Q
question-answering platform, where nodes denote users and edges indicate interactions via answered
questions.

ogbn-arxiv and ogbn-products [23] are datasets released by the Open Graph Benchmark (OGB), rep-
resenting a citation network of academic papers and an Amazon co-purchasing network, respectively.
Pokec [29] is a large-scale social network dataset.

C.2 Baselines

For all datasets, our baselines fall into two main categories: Graph Transformers and well-tuned
classical GNNs (GCN, GraphSAGE, and GAT). The Graph Transformer group includes eight models:
GraphGPS, NAGphormer, EXphormer, GOAT, NodeFormer, SGFormer, Polynormer, and Spex-
phormer.

Table 11: Summary of Dataset Statistics for Node Classification.

Dataset \ Type # Nodes # Edges # Feature  Classes
Cora Homophilous 2,708 5,278 1,433 7
Citeseer Homophilous 3,327 4,522 3,703 6
Pubmed Homophilous 19,717 44,324 500 3
Computer Homophilous 13,752 245,861 767 10
Photo Homophilous 7,650 119,081 745 8
CS Homophilous 18,333 81,894 6,805 15
Physics Homophilous 34,493 247,962 8,415 5
Wikics Homophilous 11,701 216,123 300 10
Squirrel Heterophilous 2,223 46,998 2,089 5
Chameleon Heterophilous 890 8,854 2,325 5
Roman-Empire | Heterophilous 22,662 32,927 300 18
Amazon-Ratings | Heterophilous 24,492 93,050 300 5
Minesweeper Heterophilous 10,000 39,402 7 2
Questions Heterophilous 48,921 153,540 301 2
ogbn-arxiv Homophilous 169,343 1,166,243 128 40
ogbn-products Homophilous 2,449,029 61,859,140 100 47
Pokec Heterophilous 1,632,803 30,622,564 65 2
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For GCN, GraphSAGE, and GAT, we directly use the implementatiorﬂ from [36], where the key
hyperparameters for these classical GNNs are already properly configured. For the 8 Graph Trans-
formers, we use their official implementations and tune the critical hyperparameters according to the
following configuration:

GrathPSE]We perform hyperparameter tuning on the dropout rate from {0.1,0.3,0.5,0.7}, MPNN
layer type within { GCN,GraphSAGE,GAT}, hidden size from {64, 128, 256}, the number of layer
from {1,2,3,4,5,6,7,8,9,10} and attention heads from {1,2,4}. We set the learning rate 0.001
and Performer as the global attention layer type.

NAGphormerE] We set the learning rate to 0.001 and the hidden size to 512. And We perform
hyperparameter tuning on the number of global layers from {1,2,3,4,5,6,7,8,9,10}, the number
of hops from {3, 7, 10}, dropout rate from {0.1,0.3,0.5,0.7} and epochs from {1000, 1500, 2500}.

EXphormer.E] We choose {GCN,GraphSAGE,GAT} as the local model and Exphormer as the
global model. We set the learning rate to 0.001. We perform hyperparameter tuning on the
hidden size from {64, 256,512}, the dropout rate from {0.1,0.3,0.5,0.7}, the number of layers
from {1,2,3,4,5,6,7,8,9,10} and the heads of attention from {1,2,4} and the epochs from
{1500, 2500}.

GOATE] We set the “conv type” to “full”, the learning rate to 0.001 and the epochs to 2000. We
perform hyperparameter tuning on the number of centroids from {1024, 2048, 4096}, dropout rate
from {0.1,0.3,0.5,0.7}, the hidden size from {64, 256, 512}, the heads of attention from {1, 2,4}
and the number of layers from {1,2,3,4,5,6,7,8,9,10}.

NodeFormerE] We set the learning rate to 0.001. We perform hyperparameter tuning on dropout
rate from {0.1,0.3,0.5,0.7}, the hidden size from {64, 256,512}, the heads of attention from
{1,2,4}, M from {30,50}, K from {5, 10}, rb_order from {1,2} and the number of layers from
{1,2,3,4,5,6,7,8,9,10}.

SGFormerﬂ We set the learning rate to 0.001, the number of global layer to 1 and @ = 0.5.
We perform hyperparameter tuning on dropout rate from {0.1,0.3,0.5, 0.7}, the hidden size from
{64, 256, 512}, the heads of attention from {1, 2,4}, graph weight from {0.5, 0.8}, and the number
of local layers from {1, 2, 3,4, 5}.

Polynormerﬂ For Cora, Citeseer, Pubmed, Squirrel and Chameleon, we set the learning rate
to 0.001. We perform hyperparameter tuning on dropout/indropout rate from {0.1,0.3,0.5,0.7},
the hidden size from {64,256,512}, the heads of attention from {4, 6,8}, weight decay from
{0.005, 0.0005, 0.00005}, and the number of local/global layers from {1, 2,3, 4,5,6,7,8,9,10}. For
the remaining datasets, we use the officially provided hyperparameters without further modification.

Spexphormerm For Cora, Citeseer, Pubmed, Wikics, Squirrel, Chameleon, Amazon-Ratings,
Roman-Empire, Questions and ogbn-products, we perform hyperparameter tuning on the learning rate
{0.001,0.005}, the number of GNN/GT layers from {1,2, 3, 4,5}, dropout rate from {0.1,0.3,0.5},
the hidden size from {64, 256, 512}, weight decay from {0.005,0.0005, 0.00005} and the heads of at-
tention from {2, 4, 6}. For the remaining datasets, we also use the officially provided hyperparameters
without further modification.

C.3 Computing Environment

Our implementation is based on PyG [17]] and DGL [58]]. The experiments are conducted on Python
3.8, Intel(R) Core(TM) i7-6700 CPU 3.40GHz 3.41 GHz, 24GB and Ubuntu 20.04 with Intel(R)
Xeon(R) Platinum 8480+ CPU and 8 NVIDIA H800 GPUs.

“https://github.com/LUOyk1999/tunedGNN
*https://github.com/rampasek/GraphGPS
*https://github. com/JHL-HUST/NAGphormer
Shttps://github.com/hamed1375/Exphormer
*https://github.com/devnkong/GOAT
"https://github.com/qitianwu/NodeFormer
$https://github.com/qitianwu/SGFormer
https://github. com/cornell-zhang/Polynormer
""https://github.com/hamed1375/Sp_Exphormer
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Table 12: Dataset-specific hyperparameter settings of G?Former. "BN" and "LN" denote batch
normalization and layer normalization, respectively.

Dataset \ ResNet Normalization Dropout GNNs layer Hidden size Ir T GNN backbone
Cora False False 0.9 3 512 0.001 4 GCN
Citeseer False False 0.5 2 512 0.001 3 GCN
Pubmed False False 0.7 2 512 0.005 3 GCN
Computer False LN 0.5 2 512 0.001 5 GCN
Photo True LN 0.5 5 128 0.001 2 GAT
CS True LN 0.4 2 256 0.001 3 GAT
Physics True LN 0.6 2 256 0.001 3 GCN
Wikics False LN 0.7 2 128 0.001 7 GAT
Squirrel True BN 0.7 4 512 0.01 2 GCN
Chameleon False False 0.7 2 512 0.005 2 GAT
Roman-Empire True BN 0.3 9 512 0.001 3 GCN
Amazon-Ratings True BN 0.5 3 512 0.001 1 GAT
Minesweeper True BN 0.1 17 64 0.01 4 GAT
Questions True False 0.3 13 512 3e-5 5 GCN
ogbn-arxiv True BN 0.5 6 512 0.0005 3 GCN

ogbn-products False LN 0.5 3 256 0.003 3 GraphSAGE

Pokec True BN 0.2 9 256 0.0005 3 GCN

D Hyperparameters and Reproducibility

Since our GNN backbone is based on the three classical architectures, G2Former’s hyperparameter
settings primarily follow [36]], with minor modifications depending on the specific dataset. We also
follow prior works regarding the use of mini-batch or full-batch training: except for ogbn-products
and pokec, all datasets are trained in full-batch mode. For G2Former-specific hyperparameters,
such as the number of channels 7" = « + (3, manual tuning is required. Detailed configurations for
reproducibility are provided in Table[12]

E Limitations

This study is based on a node classification benchmark and focuses solely on node-level tasks,
lacking exploration of link prediction or graph classification. Establishing edge-level and graph-level
evaluation benchmarks and further investigating the potential of GTs in supporting such tasks would
be a valuable direction for future research.
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